The RAJA Encapsulation Model for
Architecture Portability

DOE Centers of Excellence Performance Portability
Meeting, Glendale AZ

Rich Hornung, LLNL
Jeff Keasler, LLNL

April 19, 2016

LLNL-PRES-688821 Bl Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore i
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Natlonal Laboratory

Overarching RAJA goal: enable portability with small
disruption to application programming style

Balance Performance:

= Augment compiler’s ability to optimize C++ code

— Allow work-arounds when performance is not what’s expected

= Simplify expression of various forms of fine-grained (on-node) parallelism

And Productivity:

= Single-source kernels

— Do not bind an application to a particular PM technology

— Best choice for a given platform or algorithm may not be clear
= Clear separation of responsibilities

— RAJA: Encapsulate hardware and PM details and execute loops
— App: Select iteration patterns and execution policies with RAJA API

|deal: Developers add parallelism to code using RAJA encapsulation layer —

preserve development dynamics and advantages of MPI heritage

LLNL-PRES--688821

L Lawrence Livermore National Laboratory N ‘V SE{% 2
National Nuclear Security Administration

RAJA is a low-risk way to realize latent fine-grain
parallelism in existing applications

= Loop iteration and loop body are decoupled (body mostly unchanged, often untouched)
= A loop iteration is a “task” — reorder, schedule, aggregate, manage dependencies, etc.

= Explore implementation alternatives (tuning) without disrupting application source code

C-style for-loop RAJA-style loop

double* x ; double* y ;

double a ;

RAJA: : SumReduction<reduce policy, double>|tsum(0) ;
RAJA: :MinReduction<reduce policy, double>|tmin (MYMAX) ;

double* x ; double* y ;
double a, tsum = 0, tmin = MYMAX; ‘

for (int i = begin; i < end; ++i) {
y[i]l += a * x[i] ;
tsum += y[i] ;
if (y[i] < tmin) tmin = y[i];

|RAJA::forall< exec policy >|(|IndexSet |, [=] (int i) ({
y[i]l += a * x[i] ;
tsum += y[i];
tmin.min(y[i])~

} o)

= RAJA encapsulation features
— Traversals & execution policies (loop scheduling, execution, PM backends)

— IndexSets (iteration space partition, ordering, dependencies, data placement, etc.)
— Reduction types (programming model portability)

L Lawrence Livermore National Laboratory N A‘ 2{5‘% 3
National Nuclear Security Administratic

LLNL-PRES--688821 jon

RAJA enables systematic architecture portability
and tuning for large production codes

= Design based on loop / mesh traversal patterns in LLNL ASC codes
— A loop is the main conceptual abstraction in RAJA
— A typical LLNL multi-physics code has O(10K) loops, but O(10) loop patterns
— App teams typically wrap RAJA in a “mini-DSL” that matches their style

= RAJA can be used selectively and adopted incrementally
— Mapping loops to RAJA “execution policies” is key to performance
— Important considerations: data motion, compute intensity, branch intensity,
available parallelism, etc.

= Typical RAJA integration process:

2) Tune exec policies m

* |dentify loop classes
* Map classes to
architecture features

1) Achieve basic portability 3) Explore tuning options

* Make code thread-
safe where needed

» Convert loops to

» Change iteration
pattern (IndexSets)?

* Redesign algorithm

RAJA-style using RAJA traversal or data layout?
templates and + Code-specific RAJA
execution policies constructs?

/ / /

L Lawrence Livermore National Laboratory N A'SS{&“% 4
National Nuclear Security Administration

LLNL-PRES--688821

RAJA core abstractions can combined with
application-specific implementations

Original app code

// Kernel 1
for (int i=begin; i<end; ++i) {
Loop body 1 (stride-1)

}

// Kernel 2

for (int i=0; i<len; ++i) {
Loop body 2 (indirection)

}

// Kernel 3

// Kernel 4

Para-
meterized
RAJA

loops

—

Customized RAJA

Architecture- Kernel 4 - Arch A
tailored
implementations Kernel 4 - Arch B

“RAJA-fied” app code

// Kernel 1 : “stream” 2 low FLOP/bandwidth

RAJA: : forall<stream> (begin, end, [=] (int i) ({
Loop body 1

})

// ..
// Kernel 2 : “work” > high FLOP/bandwidth
RAJA: :forall<work> (iset, [=] (int i) {

Loop body 2 (iset = index “ranges” & “lists”)

})

Execution policies (app defined)
Arch A : stream =
Arch B : stream =

seq, work = omp

gpu

omp, work =

// Kernel 3 : RAJA IndexSet w/ custom traversal
app: : forall<app policy> (iset, [=] (..) {

Loop body 3
})

RAJA supports relatively simple parameterization of most loops.

Others may need customization or more severe disruption for desired performance.

L Lawrence Livermore National Laboratory

LLNL-PRES--688821

24\
N 4 S
r Security Administration

National Nuclear

RAJA IndexSets simplify thread-safe refactoring

of code with data races

forall< colorset >(elemSet, [=] (int elem) {
// Get element node 1ids
int p@ = elemToNodeMap[elem][Q];
int pl = elemToNodeMap[elem][1];
int p2 = elemToNodeMap[elem][2];
int p3 = elemToNodeMap[elem][3];

// Accumulate volume to nodes
double volFrac = elemVol[elem]/4.0 ;
nodeVol[p@] += volFrac ;

nodeVol[pl] += volFrac ;

nodeVol[p2] += volFrac ;

nodeVol[p3] += volFrac ;

})s

p0 p1

Example code: accumulate element
volumes to mesh nodes

Ilterations are colored into sets of
independent work (IndexSet Segments)

— Iterate over segments sequentially
— Execute each segment in parallel

Without reordering, requires either:

— Contention-heavy fine-grained sync ops
(atomics / critical sections)

— Temporary arrays for accumulating sums

RAJA reordering allows use of coarse-

grained synchronization
— Less memory contention
— Code remains as domain expert wrote it

E Lawrence Livermore National Laboratory

LLNL-PRES--688821

NAYSE o

National Nuclear Security Administration

RAJA IndexSets and traversals also enable
developers to define & schedule dependencies

#pragma omp parallel for schedule(static,1)

for (int i = 0; i < is->num seg; ++i) { :

IndexSetSegInfo* seg_info = iset.getSegmentInfo(i); VVaﬂfbr

DepGraphNode* task = seg info->getDepGraphNode () ; dependenmes to be

while (task->semaphoreValue() != 0) { satisfied
sched yield() ;

}

execute<SEG_EXEC POLICY>(seg_info, loop body) ; Execute Segment

if (task->semaphoreReloadVaue() != 0) {
task->semaphoreValue () = task->semaphoreReloadValue() ;

}

if (task->numDepTasks() != 0) { Resgt deper_]dency
for (int j = 0; j < task->numumDepTasks; ++3j) { information

int seg = task->depTaskNum(j) ;
DepGraphNode* dep = iset.getSegmentInfo (seg)->getDepGraphNode () ;
__sync_fetch and sub (& (dep->semaphoreValue()), 1);

Segment scheduling control logic like this is hidden in a

} RAJA traversal template.

L Lawrence Livermore National Laboratory N A 2_@‘% 7

LLNL-PRES--688821 National Nuclear Security Administration

RAJA version of LULESH v1.0 hydro proxy app is
an interesting case study

LULESH 1.0, 45x45x45 mesh

Runtime in seconds

Base OpenMP

30 implementation is
memory intensive | Add pools for temp
25 RAJA OpenMP uses ~ armays. iPU'GF;.lIJ
20 coarse-grained switch in header file.
, synchronization /\
15 /
10 ¥
5 -
° RAJA-MEM RAJA-MEM
Base-OMP-16 RAJA-OMP-16 OMP-16 GPU-HALF-KS0
W Seriesl 28.47 13.64 8.1 11.7

‘ Lawrence Livermore National Laboratory

LLNL-PRES--688821

NYSE s

National Nuclear Security Administration

RAJA K80 GPU performance for LULESH v2.0 has
improved markedly since FY15 ASC milestone

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

0 -

¥ Kokkos-Opt-2

B RAJA-UM

“ RAJA-RM

LULESH 2.0 FOM

W RAJA-OMP-16

30 45 60 60 -r1
LULESH 2.0 problem size

Compiled with nvcec 7.5 using compute 37

Lawrence Livermore National Laboratory N ‘Y Sgé‘g 9

LLLLLLLLLLLLLLLLL nal Nuclear Security Administration

We are developing extensions and complements
to RAJA that address other application needs

= Abstractions to automatically move data between DRAM and HBM
or device memory — less code “clutter” than OpenMP 4 or CUDA:

4 ManagedArray A ResourceManager RAJAprovides | n,yid Poliakoff
objects know object knows contextto know | . tomorrow
what whether where
 datatocopy to copy data to copy data J

= forallN extensions for nested loops:
— Supports loop interchange and data layout changes Adam Kunen

— Provides loop index types to ensure code is correct talk tomorrow

LLNL developers are assessing these concepts in production applications today.

L Lawrence Livermore National Laboratory N A' ngo‘% 0
National Nuclear Security Administration

LLNL-PRES--688821

RAJA enables a single source code base to run
with multiple forms of parallelism

= CPU-GPU portability achieved with existing PMs and standard C++11
— Often does not require much code restructuring (incl. reductions) or multiple versions

= RAJA can help make tuning more systematic
— Focus on loop patterns, not individual loops

= |[ndexSets provide a lot of flexibility

— Code specializations generated (and optimized) at compile-time. Execution paths through
specializations selected at runtime.

— Dependencies between iteration subsets (Segments) can be defined to ensure correctness

= Multiple LLNL projects contribute to RAJA: Ares, ALE3D, Ardra, AAPS, etc.

— See David Beckingsale policy tuning talk tomorrow

= Three LLNL production apps are integrating RAJA to prepare for Trinity and Sierra :
Ares, ALE3D, Ardra

= QOther codes are exploring RAJA : NIF VBL, hypre, Vislt, hydra, MARBL

— See Matt Martineau proxy-app talk tomorrow

An open-source RAJA release with example codes is imminent and will be available at

http://github.com/LLNL/RAJA -- collaborators welcome!

L Lawrence Livermore National Laboratory N A' Sg{»‘g‘ 11
National Nuclear Security Administration

LLNL-PRES--688821

Software engineering alone is not enough — we
need to work closely with vendors too

= Compiler vendors & PM developers have been improving support for C++ based
encapsulation

— IBM, NVIDIA, Intel, GNU, AMD (Sierra CoE, DesignForward, FastForward, van trips...)
— OpenMP 4.0 2 OpenMP 4.5 & beyond (See Arpith Jacob talk next)

Tool support for C++ templates : HPCToolkit, Intel

Try things
= We (DOE HPC community) must and identify
tell vendors what we need issues

Build test

cases

= (Good solutions involve
negotiations (our needs, vendor

priorities, language standards, Evaluate Work with
vendor extensions, etc.) vendor vendors on

Co-design

solutions solutions

A relatively small investment in compilers and runtimes (and vigilance) — compared to

HW costs — can have a huge, positive, lasting impact on our codes. Issues we identify
and work to resolve also benefit the broader HPC community.

LLNL-PRES--688821

L Lawrence Livermore National Laboratory N ‘V Sg@ 12
r ity Administration

National Nuclear Securit

B Lawrence Livermore
National Laboratory

